If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-9x-43=0
a = 2; b = -9; c = -43;
Δ = b2-4ac
Δ = -92-4·2·(-43)
Δ = 425
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{425}=\sqrt{25*17}=\sqrt{25}*\sqrt{17}=5\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-5\sqrt{17}}{2*2}=\frac{9-5\sqrt{17}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+5\sqrt{17}}{2*2}=\frac{9+5\sqrt{17}}{4} $
| -8x+5=100 | | 3x+7=14x+4 | | -8x-5=100 | | 18+4t=-14+8t-2t | | 3x-8=4x-21 | | 1/2(4y+11)=6y+5 | | 7x+8=-7x-16 | | 4×/9+x/3=14 | | x2−12x+24=0 | | 19-8x=16+x | | .3(2x-3)+4(2-x)=0 | | 3x-50=180=2x-5 | | 5-2x=16-3x | | 6x2+23x=4 | | 6n+24=18 | | 17-17f=-16f+15 | | −49f=−3 | | x+28+50=180 | | x+14=5x-34 | | 5y2+11y+2=0 | | 9.67-17.5j=-18.7j-11.69 | | 5-t/3+t=13/12 | | 3x+1/7=-5/14 | | y-0=4 | | T(n)=2n+10 | | 9y+2=15 | | y/3-16=7 | | x+2x+7x+2=22 | | x/2+7=4 | | 7y+3=8+2y | | -4(2x+5)=-8x-20 | | 175+65x=250+50x |